Draft OHAT Approach Part 2 Confidence in the Body of Evidence Through Integrating the Evidence Andrew Rooney, Ph.D. Division of the National Toxicology Program, Office of Health Assessment and Translation (OHAT) Web-Based Informational Meeting April 23, 2013 12:00 - 4:00PM EDT # Draft OHAT Approach for Systematic Review and Evidence Integration for Literature-Based Health Assessments This Presentation will focus on Steps 5-7 **Step 2:** Search for and select studies Step 3: Extract data from studies Step 4: Assess individual study quality Step 5: Rate confidence in body of evidence Step 6: Translate confidence ratings into level of evidence for health effect # Draft OHAT Approach for Systematic Review and Evidence Integration for Literature-Based Health Assessments ### This Presentation will focus on Steps 5-7 Step 1: Prepare topic Step 2: Search for and select studies Step 3: Extract data from studies Step 4: Assess individual study quality Step 5: Rate confidence in body of evidence How confident are you that the findings from a group of studies reflect the true relationship between exposure to a substance and an effect? **Step 6:** Translate confidence ratings into level of evidence for health effect Step 7: Integrate evidence to develop hazard identification conclusions Integrate the evidence to develop hazard identification conclusions: - by combining evidence streams (i.e., human and animal data) - with consideration of other relevant data such as mechanistic studies ### Confidence Rating – How confident are you that findings from a group of studies reflect the true relationship between exposure to a substance and an effect? ### Existing Methods - The GRADE approach is a widely accepted method for rating confidence in a body of evidence - No guidance for animal studies - No guidance for in vitro studies - All observational human studies are given the same initial low quality (e.g., case-report = prospective cohort study) ### Why GRADE? - Developed by broad group of international guideline developers in the area of healthcare - Clear presentation of elements considered for downgrading or upgrading confidence in body of evidence - Framework for documenting scientific judgment decisions - Elements cover Bradford Hill causality considerations - Practitioners engage in ongoing methods development Endorsed and used by over 70 organizations - Consistent with DHHS sister agencies - Conceptually similar to AHRQ model - Supported by parts of CDC for healthcare recommendations - Confidence Rating (human and animal data separately) - Indicates confidence that findings from the body of evidence reflects the true relationship between exposure to a substance and an effect - Initial Confidence - On an outcome basis - Determined by key study design features # Initial Confidence High Moderate Low Very Low #### **Key Features** - Controlled exposure - Exposure prior to outcome - Individual outcome data - Comparison group used Reflect the ability of study design to address confidence that exposure preceded and was associated with outcome #### Example: - Well conducted experimental studies will have all 4 key features - Therefore "High" initial confidence - Confidence Rating (human and animal data separately) - Indicates confidence that findings from the body of evidence reflects the true relationship between exposure to a substance and an effect - Initial Confidence - Factors Decreasing Confidence Are there issues that would DECREASE confidence that findings reflect the true relationship between exposure and effects? Moderate **Example:** outcome is indirect measure or "upstream indicator" Decrease confidence from "High" to "Moderate" - Confidence Rating (human and animal data separately) - Indicates confidence that findings from the body of evidence reflects the true relationship between exposure to a substance and an effect - Initial Confidence - Factors Decreasing Confidence - Factors Increasing Confidence Initial Confidence High * Risk of Bias * Unexplained Inconsistency Low Very Low Publication Bias # Factors Increasing Confidence - Large Magnitude of Effect - Dose Response - All Plausible Confounding - Consistency - Other Are there issues that INCREASE confidence that findings reflect the true relationship between exposure and effects? Moderate **Example:** no issues No increase in confidence # **Step 5 Schematic:** Adaptations to Address Breadth, of Data Relevant for Environmental Health Questions Initial confidence set by study design features in OHAT Approach (stratifies observational studies) | Initial Confidence
by Key Features
of Study Design | Factors Decreasing Confidence | Factors Increasing Confidence | Confidence in the Body of Evidence | |--|--|--|------------------------------------| | High (++++) 4 Features Features | Risk of BiasUnexplained | Large Magnitude of Effect Dose Response | High (++++) | | Moderate (+++) 3 Features • Controlled exposure • Exposure prior to outcome | InconsistencyIndirectnessImprecision | All Plausible Confounding Studies report an effect and residual confounding is toward null Studies report no effect and residual confounding is away from null | Moderate (+++) | | Low (++) 2 Features • Individual outcome data • Compariso | Publication Bias | Consistency Across animal models or species Across dissimilar populations | Low (++) | | | ed consistency
eadth of data | Across study design types Other e.g., particularly rare outcomes | Very Low (+) | # **Example Guidance in Protocols:**When to Downgrade for Unexplained Inconsistency ^{*}protocol also includes guidance on when we might conduct a quantitative data synthesis # **Example Guidance in Protocols:**When to Downgrade for Unexplained Inconsistency Table 15. Factors to consider when considering consistency of results ^{*}protocol also includes guidance on when we might conduct a quantitative data synthesis # **Example Guidance in Protocols:**When to Upgrade for Dose Response Gradient ## **Example Guidance in Protocols:** When to Upgrade for Dose Response Gradient Table 19. Conceptual examples of upgrade decisions for evidence of dose response gradient # Reaching Final Confidence Conclusions on Human and Animal Studies Conclusions are based on the evidence with the highest confidence rating when considering across study designs and multiple outcomes ### Across biologically-related outcomes - First: rate confidence in individual outcomes - Then: re-evaluate confidence conclusion for combined outcomes - The overall confidence conclusion for a combined outcome can differ from (e.g., be higher than) the individual outcome ratings #### **Example:** Blood Pressure Cardiovascular disease Cardiovascular mortality • Note: If body of evidence has "Very Low" confidence, it is not used to develop hazard ID conclusions in steps 6 and 7 # **Confidence in Other Relevant Studies: Assessment of Biological Plausibility** Factors considered when evaluating the support for biological plausibility provided by *in vitro*, cellular, genomic, or mode of action data #### Strong Support¹ **Weak Support** - Relevance of biological process or pathway to human health - Consistency - Relevance of concentration Factors considered parallel elements used to evaluate confidence in the other data streams - Potency - Dose response - Publication bias A conclusion of "strong" support for biological plausibility requires that most elements are met # Step 6: Translate Confidence Ratings into Level of Evidence for Health Effects - Level of evidence for health effects conclusions reflect - The overall confidence in the association between exposure to a substance and a given outcome, and - The direction of the effect (toxicity or no toxicity) Note: descriptors are applied separately to human and experimental animal evidence # Step 7: Integrate Evidence to Develop Hazard Identification Conclusions - Integrate evidence by combining evidence streams to reach one of four overall hazard identification conclusions - Known to be a hazard to humans - Presumed to be a hazard to humans - Suspected to be a hazard to humans - Not classifiable to be a hazard to humans - Two part process for integrating the evidence - Consider human evidence and animal evidence together - Consider impact of other relevant data - e.g., mechanistic, in vitro, or upstream indicator data ### **Integrate Evidence to Develop Hazard ID Conclusions** # Assessment of Biological Plausibility Provided by Other Relevant Studies: PFOA/PFOS and Immunotoxicity - Consider upgrading the hazard ID If other relevant data provide strong support for biological plausibility of the relationship between exposure and the health effect - To provide support, the mechanistic or in vitro data must support biological plausibility of observed immune outcomes from human epidemiology or in vivo animal studies - It is also envisioned that strong evidence for a relevant biological process from mechanistic or *in vitro* data could result in a conclusion of "suspected" in the absence of human epidemiology or *in vivo* animal data # Assessment of Biological Plausibility Provided by Other Relevant Studies: PFOA/PFOS and Immunotoxicity Factors considered when evaluating the support for biological plausibility provided by *in vitro*, cellular, genomic, or mode of action data #### More detail and examples provided in the protocol #### **Strong Support¹** - Relevance of biological process or pathway to human health generally accepted as relevant (e.g., myelotoxicity or bone marrow toxicity) - **Consistency** consistency across multiple studies (preferably in more than 2 in different model systems for the same biological pathway) - Relevance of concentration physiologically relevant or "low" concentration effects (e.g., mean of 3-5ng/ml PFOA and 9–30 ng/ml PFOS in the US population 1999-2010 (CDC 2012) range of 17-5100 ng/ml PFOA and 37-3490 ng/ml PFOS in occupationally exposed adults) - Potency magnitude of response - Dose response displays expected dose - Publication bias undetected Consistency still applies in absence of *in vivo* data, analogous to other data streams #### Consistency - Within context of observed in vivo immune outcomes - IgE supports sensitization - IgE does not support NK - Stronger if data provide information on multiple steps along the relevant biological pathway - Also applies to repeatability within the same assay across studies ### **Causality Considerations in draft OHAT Approach** | Hill Considerations | Consideration in the OHAT Approach | |-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Strength | upgrading the confidence in the body of evidence for large magnitude of effect downgrading confidence for imprecision | | Consistency | upgrading confidence in the body of evidence for consistency across study types, consistency across dissimilar populations consistency across animal species or models integrating the body of evidence among human, animal, and other relevant data downgrading confidence in the body of evidence for unexplained inconsistency | | Temporality | • the <i>initial confidence ratings</i> by study design, for example experimental studies are rated "High" because of the increased confidence that exposure preceded outcome | | Biological gradient | • upgrading the confidence in the body of evidence for a <i>dose-response</i> relationship | | Biological plausibility | in examining non monotonic dose-response relationships in developing confidence conclusions across biologically related outcomes other relevant data that inform plausibility are considered in integrating the body of evidence downgrading the confidence in the body of evidence for indirectness | | Experimental evidence | the initial confidence ratings by study design downgrading for risk of bias | ### **Next Steps** - Framework is currently available for public comment - Released publically February 25, 2013 - For more files and details see http://ntp.niehs.nih.gov/go/38673 - Public comment period ends <u>June 11, 2013</u> - Two case studies to assess and refine methods - Protocols illustrate the application of this framework - BPA exposure and obesity - PFOA or PFOS exposure and immunotoxicity - Released publically April 9, 2013 - Careful consideration of comments from public and at NTP Board of Scientific Councilors Meeting June 25, 2013 - Release updated guidance - Expect to be updated periodically, e.g., new best practices ### **Acknowledgements** #### Office of Health Assessment and Translation - Abee Boyles - Kembra Howdeshell - Andrew Rooney, Deputy Director - Michael Shelby - Kyla Taylor - Kristina Thayer, Director - Vickie Walker #### Office of Liaison, Policy and Review - Mary Wolfe, Director - Lori White #### Approach Technical Advisors and Experts - Lisa Bero, Director, San Francisco Branch, United States Cochrane Center at UC San Francisco - Gordon Guyatt, Co-chair, GRADE Working Group, McMaster University - Malcolm Macleod, CAMARADES Centre, University of Edinburgh - Karen Robinson, Co-Director, Evidence-Based Practice Center, The Johns Hopkins Bloomberg School of Public Health - Holger Schünemann, Co-chair, GRADE Working Group, McMaster University - Tracey Woodruff, Director, Program on Reproductive Health and the Environment, UCSF #### NTP BSC Working Group - Lynn Goldman, Chair, Dean, School of Public Health and Health Services, George Washington University, Washington, DC - Reeder Sams, Vice-chair, Acting Deputy Director, National Center for Environmental Assessment/RTP Division, USEPA - Lisa Bero, Director, San Francisco Branch, United States Cochrane Center at UC San Francisco - Edward Carney, Senior Science Leader, Mammalian Toxicology, Dow Chemical Company - David Dorman, Professor, North Carolina State University - Elaine Faustman, Director, Institute for Risk Analysis and Risk Communication, University of Washington - Dale Hattis, Research Professor, George Perkins Marsh Institute, Clark University - Malcolm Macleod, CAMARADES Centre, University of Edinburgh - Tracey Woodruff, Director, Program on Reproductive Health and the Environment, UCSF - Lauren Zeise, Chief, Reproductive and Cancer Hazard Assessment Branch, OEHHA, California EPA #### Protocol Technical Advisors Very Low (+) data Very Low (+) ≤1 Features Comparison group used Bias · Across dissimilar populations e.g., particularly rare outcomes · Across study design types No effect No effect (++) Moderate = health effect Inadequate Inadequate # Extra Slides # **Example Guidance in Protocols:**When to Downgrade for Indirectness | Table 15. Guidance for downgrading human studies for directness | | | | | | |-----------------------------------------------------------------|----|----------|------------------------|-----------|--| | Health | | Exposure | Time between exposure | Overall | | | outcomes | | scenario | and outcome assessment | downgrade | | | primary | 0 | 0 | 0 | 0 | | | secondary | -1 | 1 0 0 | | -1 | | | 0 = no downgrade -1 = one downgrade -2 two downgrade | | | | | | Downgrade for secondary outcomes # Example Guidance in Protocols: When to Downgrade for Indirectness PFOA / PFOS Exposure and Immunotoxicity | Table 16. Guidance for downgrading animal studies for directness | | | | | | | | | |-----------------------------------------------------------------------|----|-----------------|----|--------------------------------------------|-------------|----------------------------|-------------------|--| | Animal model | | Health outcomes | | Route of administration | | Time between treatment and | Overall downgrade | | | | | | | | Ro | ute of admini | stration | | | Mammalian | 0 | primary | 0 | oral, sc injection, dermal, inhalation | 0 | 0 | 0 | | | | | | | intraperitoneal injection | -1 | 0 | -1 | | | | | secondary | -1 | oral, injection, dermal, inhalation | 0 | 0 | -1 | | | | | | | Intraperitoneal (ip) injection | -1 | 0 | -2 | | | Non- | -1 | primary | 0 | oral, sc injection, dermal, inhalation | 0 | 0 | -1 | | | mammalian | | | | ip, water for aquatic species | -1 | 0 | -2 | | | vertebrates | | secondary | -1 | Downgrade for Indirectness | | | | | | Invertebrates -2 primary Model (mammal=0, vertebrate -1, invertebrate | | | | | tebrate -2) | | | | | | | secondary | -1 | Health outcome (primary = 0, secondary -1) | | | | | 0 = no downgrade, -1 = one downgrade, -2 two downgrade sc = subcutaneous, ip = intraperitoneal ### Key Study Design Features for Initial Confidence #### 1. Exposure to the substance is controlled Experimental studies can largely eliminate confounding by randomizing allocation of exposure # 2. Exposure assessment represents exposures occurring prior to the development of the outcome Supports causal pathway and if present, it is unlikely that association is the result of reverse causation # 3. Outcome is assessed on the individual level (i.e., not population aggregate data) Without individual-level information on outcomes, a study cannot control for additional confounding variables ("ecologic fallacy") # 4. Comparison group is used within the study (e.g., not case reports) # **Example Details Included in Summary Tables** | Table 6 from PFOA/PFOS Exposure and Immunotoxicity Protocol | | | | | | | |-------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|--| | Reference, Stud | dy Design & Population | Health Outcome | Exposure | Statistical Analysis | Results | | | (Carwile and M | Nichels 2011) | Diagnostic and prevalence in tota | Exposure assessment | obesity & overweig | adjOR (95% CI) | | | Study Design: o | cross-sectional | cohort: | urine (μg/g creatinine γ | polytomous regression | obesity | | | Adults who par | rticipated in the 2003/04 an 2005/06 | | ng/ml and creatinine as | elevated WC: | Q2 vs Q1: 1.85 (1.2,2.79) | | | National Health | h and Nutrition Examination Jurvey | obesity: BMI ≥ 30 (n=932, 34.3%) | adjustment variable) | logistic regression | Q3 vs Q1: 1.60 (1.0 2.44) | | | (NHANES) and a | a spot urine sample analysed or BPA. | overweight: 25 ≤ BMI < 30 (n=864, | measured by online SPE- | Adjustment factors: | Q4 vs Q1: 1.76 (1.06 2.94) | | | N: 2747 | | 31.8%) | HPLC-MS/MS (Ye 2005) | sex, age, race, urinary catinine, | overweight | | | Location: US, N | NHANES national survey | elevated waist circumference (WC): | Exposure levels: | education, smoking | Q2 vs Q1: 1.66 (1.21,2 27) | | | Sex (% male): | ♂♀(49.6%) | >102 cm in ♂ or ≥ 88 cm in ♀ | 2.05 μg/g creatinine | Statistical power: "appears to be | Q3 vs Q1: 1.26 (0.85,1.7) | | | Sampling time | frame: 2003-2006 | (n=1330, 50%) | reometric mean), 1.18-3.33 | adequately powered" bas d on | Q4 vs Q1: 1.31 (0.80,2.1 !) | | | Age: 18-74 year | irs | | (15-75th percentile) | ability to detect an OR of 1 5 with | elevated WC | | | Exclusions: pre | gnant women, participants with | *BMI = body mass index (kg/m²) | Q. ≤1.1 ng/ml | 80% power using Q1 prevalence | Q2 vs Q1: 1.62 (1.11,2.36 | | | 77 | BPA, creatine, BMI, or covariate da | | Q2 1.2-2.3 ng/ml | of 40.4% obesity, 44.4% | Q3 vs Q1: 1.39 (1.02,1.90) | | | | e: NIH National Research Service (NR. 4) | | Q3: .4-4.6 ng/ml | verweight, and 46% elevated | Q4 vs Q1: 1.58 (1.03,2.42) | | | | t of interest: not reported | | Q4: > 1.7 ng/ml | V C | | | | | er as "appears to be adequately powerd" | | ered (sample size is 75% to <100% | 6 of ecommended), "underpowered | " | | | | severely underpowered (sample size is < | 0% required) | | | Results | | | RISK OF BIAS A | | | | | Results | | | Risk of bias res | sponse options for individual items: shou | we delete domains from this table? | | | | | | Bias Domain | <i>'</i> | Criterion | | Re | <u>L</u> | | | Selection | Was adi inistered dose or exposure lev | el dequately randomized? | n/a not a | pplicable | Analysis 📮 | | | | Was allo ation to study groups adequate | rely oncealed? | n/a not a | pplicable | Allalysis | | | | Were the comparison groups appropria | te? | ++ yes, i | pased on quart | $\overline{}$ | | | Confounding | Does the study design or analysis accou | nt for mportant confounding and modify | ing variables? ++ yes (s | sex, age, race | | | | Comounting | 157 106 9 | 2 20 2 | adjus | tment for nut | osure | | | | Did researchers adjust or control for ot | ner exp sures that are anticipated to bias | results? + no, b | ut not conside | tudies | | | Performance | Were experimental conditions identical | across s udy groups? | | | | | | | Did deviation from the study protocol | impact the results? | | ealth Outcor | mo | | | | Were the research personnel and huma | in subjects blinded to the study group dur | ing the study? | eaith Outcom | IIE | | | Attrition | Were outcome data incom | | | | or any analysis) | | | Detection | Were the outcome assesso | ference, Study | , Design an | d Population | sessment | | | | Were confounding variable | iciciico, otaaj | | a i opulatioi | | | | | Can we be co | | ++ ves. | NHANES methods are considered "go | id standard" for urinary BPA | | | | | t Dies | | used standard diagnostic criteria | | | | Selective | RISK O | I RIAS | | primary outcomes discussed in metho | ods were presented results | | | Reporting | Were all mea | | | on with adequate level of detail for d | · · · · · · · · · · · · · · · · · · · | | | Other | Were there any other potential threats | to internal validity (e.g., inappropriate sta | | | | | | (0.000000000000000000000000000000000000 | | | | | | | | RISK OF BIAS | | | 1 st Tier for | risk of bias | | | | | sponse options for individual items: | | | | | | | ++ definite | ely low risk of bias | | | | | | probably low risk of bias probably high risk of bias definitely high risk of bias not applicable ### **Example Risk of Bias Details in Summary Table** #### Table 6 from PFOA/PFOS Reference, Study Design & Population (Carwile and Michels 2011) Study Design: cross-sectional Adults who participated in the 2003/04 and 2 National Health and Nutrition Examination St (NHANES) and a spot urine sample analysed to N: 2747 Location: US, NHANES national survey Sex (% male): 3♀(49.6%) Sampling time frame: 2003-2006 Age: 18-74 years Exclusions: pregnant women, part cipants w missing urinary BPA, creatine, PVII, or covari Funding Source: NIH Nationa Research Serv Author conflict of interest not reported statistical power as "ap cars to be adequatel required), or "severe underpowered (sample s ### Risk of Bias - Rating/answer to applicable questions - **Answers justified with text from study** - Hypothetical example on confounding: "yes (sex, age, race urinary creatinine, education, smoking), but no adjustment for nutritional quality" | RISK OF BIAS ASSESSMENT | | | | | | |-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------|--|--| | Risk of bias response options for individual items: should we delete domains from this table? | | | | | | | Bias Domain | Criterion | | Response | | | | Selection | Was administered dose or exposure level adequately randomized? | n/a | not applicable | | | | | Was allocation to study groups adequately concealed? | | not applicable | | | | | Were the comparison groups appropriate? | ++ | yes, based on quartiles of exposure | | | | Confounding | Does the study design or analysis account for important confounding and modifying variables? | | yes (sex, age, race, urinary creatinine, education, smoking), but no | | | | Comountaing | boes the study design of analysis account for important comounting and mountying variables: | | adjustment for nutritional quality, e.g., soda consumption | | | | | Did researchers adjust or control for other exposures that are anticipated to bias results? | + | no, but not considered to present risk of bias in general population studies | | | | Performance | Were experimental conditions identical across study groups? | | not applicable | | | | Did deviations from the study protocol impact the results? | | + | no deviations reported | | | | | Were the research personnel and human subjects blinded to the study group during the study? | n/a | not applicable | | | | Attrition | Ware outcome data incomplete due to attrition or evaluaion from analysis? | 4 | not considered a risk of bias, excluded observations (≤ 87 for any analysis) | | | | Attrition | Were outcome data incomplete due to attrition or exclusion from analysis? | | based on missing BMI or covariate data | | | | Detection | Were the outcome assessors blinded to study group or exposure level? | ++ | yes, BPA levels not known at time of outcome assessment | | | | | Were confounding variables assessed consistently across groups using valid and reliable measures? | ++ | yes, used standard NHANES methods | | | | | Can we be confident in the exposure characterization? | ++ | yes, NHANES methods are considered "gold standard" for urinary BPA | | | | | Can we be confident in the outcome assessment? | ++ | yes, used standard diagnostic criteria | | | | Selective | Were all measured outcomes reported? | ++ | yes, primary outcomes discussed in methods were presented results | | | | Reporting | were all measured outcomes reported: | | section with adequate level of detail for data extraction | | | | Other | Were there any other potential threats to internal validity (e.g., inappropriate statistical methods)? | ++ | none identified | | | **RISK OF BIAS** Risk of bias response options for individual items: definitely low risk of bias probably low risk of bias probably high risk of bias definitely high risk of bias not applicable 1st Tier for risk of bias